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Key messages

* Focus is only on clustering

e Understand internals to maximise ML effectiveness

Classification is a big field

Data analysis is not for the faint-hearted

* Usage with some example exploration data
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Classification:
Creating meaningful
groups out of a
collection of objects

~

)

Machine Learning

Guild the Model:\

Feature extraction to
enable effective
identification of new

Unsupervised
learning
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Identification:
Use the model to

one of the groups

~

identify new objects to

)

Supervised

learning
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The Machine Learning Workflow

Testing
Dataset

Training
Dataset

Algorithm

Evaluation

https://towardsdatascience.com
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Multivariate methods for classification and dimensionality reduction

* Cluster analysis
* Finding “natural” or pre-determined groups in datasets

* Principal components analysis
* Reducing the dimensionality of a data set by finding a smaller set of
variables that still represents it
* Factor analysis
* For data sets where a large number of observed variables are thought
to reflect a smaller number of unobserved/latent variables.
* Multi dimensional scaling
e Technique for visualising the level of similarity of samples transformed
onto a 2D plane
* Linear & Multiple Regression

 One or more independent variables are used to predict the value of a
dependent variable
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Some approaches to Clustering

e K-Means

» |terative computing of distances between points and group means. Requires
specification of number of groups.

Mean Shift Clustering

» Sliding iterative method to find point groups of higher mean density.

e Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

* Similar to Mean Shift but will identify noise and outliers.
e Expectation—Maximization (EM) Clustering using

Gaussian Mixture Models (GMM)

» Uses Gaussian approach to define clusters and uses both mean and std
deviation unlike K-Means which only uses means. Detects elliptical clusters

* Agglomerative Hierarchical Clustering

* Progressive pairwise clustering until all are merge into one tree in a
dendrogram. Not too sensitive to choice of coefficient.

PreClSlon-DM https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
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Cluster Analysis — Separating variables in n-dimensions

Visualization

2 dimensions

Ins Dataset, KMeans clustenng with K=3
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Cluster analysis requires:

3 dimensions

SepalWiath vs. SepalLength vs. PetalLength
By iris

1. Measure of pairwise proximities between points
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Proximity measures

Data Measures of Similarity / Dissimilarity (Distance)
Matching coefficient S;=(a+d)/(a+b+c+d)
Binary Jaccard coefficient (1908) Sj=a/(a+b+c)
(presence/absence) Rogers & Tanimoto (1960) S;=(a+d)/[a+2(b+c)+d]
i j Sneath & Sokal (1973) S;=a/[a+2(b+c)]
Gower & Legendre (1986) S;=(a+d)/[a+%(b+c)+d]
S;=a/[a+%(b+c)]
d M
Euclidean Distance _ 2
dix, yv) = "
Distance between vectors x & y (%) «Jzi:l/-’fr Y,/
Continuous
Canberra Distance d(u,v) = Z _|“f- — Vi
Distance between vectors u & v U]t |v; |
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Proximity measures - Euclidean Distance — Pythagoras’s Theorem

Y%, v2)
In a right angled triangle, the
length of the hypothenuse is
equal to the square root of C
the sum of squares of the Yo _Y4

other 2 sides

X

(X]_I yl) XZ—Xl

C =V(X2_X1)2 + (yz—yl)2

X
The Euclidean Distance  d(x, ) =J2(xj -y ) = n=2
i
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Examples from Exploration data

1. Prospect Appraisal — Expectation values
2. Well logs — Curve values
3. Micropaleontology — Foraminiferal assemblages
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Exploration Prospect Appraisal
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DATA

Seismic interpretation

Geological picks & zones
Paleontology (incl. palyn, nanno etc)
Lithology & Lithofacies
Environments of deposition
Temperature

etc
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Exploration Prospect Appraisal — The DATA

OIL (0 mmbbls cutoff) OIL (30 mmbbls GAS (0 bscf cutoff) (values/POS)
cutoff)
Expectation Expectation MSV MSV
POS MSV HSV REC. STOIIP POS MSV HSV POS MSV HSV  Rec. GlIP STOIIP GlIP
80 6 10 5 24 1 21 0 96 79 133 76 122 30 127
64 11 26 7 23 10 38 60 64 25 57 16 27 36 42
68 11 23 8 31 15 29 38 80 41 90 33 55 46 69
85 5 9 4 27 0 0 0 85 15 32 13 25 32 29
72 7 16 5 22 6 29 40 80 27 64 22 36 31 45
78 3 6 2 11 0 0 0 87 13 30 11 18 14 21
80 4 8 3 11 0 0 0 99 29 49 29 49 14 49
81 11 22 9 43 18 28 36 90 55 114 50 82 53 91
26 8 19 2 10 4 29 36 29 35 75 10 16 38 55
65 4 6 2 12 0 0 0 72 34 59 24 34 18 47
80 2 2 1 5 0 0 0 92 6 12 6 9 6 10
85 22 41 18 73 40 36 52 95 113 219 107 184 86 194
48 2 4 1 5 0 0 0 80 18 33 14 29 10 36
48 2 4 1 5 0 0 0 80 18 33 14 29 10 36
90 18 37 16 76 29 37 56 99 53 109 52 88 84 89
84 20 48 17 81 29 47 75 94 57 135 54 92 96 98
81 11 21 9 37 12 26 31 83 61 110 51 91 46 110
81 11 21 9 37 12 26 31 83 61 110 51 91 46 110
80 12 24 9 46 16 28 37 90 61 125 55 92 58 102
80 12 24 9 46 16 28 37 90 61 125 55 92 58 102
67 6 11 4 17 1 27 34 80 29 61 23 36 25 45

The purpose: Exploring ‘natural’ groups of prospects may trigger ideas
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Exploration Prospect Appraisal - Clustering

Customer Dendograms - Ward's Custemer Dendograms - Centroid

4000 4 2500 1
2000 4
3000
1~
s 1500
\
hoo0 \

1000 4

e RTRE -

\ BAg"" R AR gaen R

. , . a5 a3 =,.=. =LEl ua' HEE"E
b Clustering method: Ward Clustering method: Centroid
Coefficient: Squared Euclidean Distance Coefficient: Squared Euclidean Distance
Customer Dendograms - Average Linkage Customer Dendoegrams - Complete Linkage
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Clustering method: Average Linkage
Coefficient: Squared Euclidean Distance Coefficient: Squared Euclidean Distance
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p .. DM cust \vsis using Spvder / A g 1. Not very distinct clusters
recision Sc?syecﬁj:tae:’:izrasr':fy ggng:ogran;con @ 2. Review data to remove non-discriminatory data
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Well Curves — The DATA

Depth SGRC SGRA SGRB SEXP SESP SEMP SEDP SEXC SESC SEMC SEDC SEDA STEM SDDE SPLF SNNA SNFA SBDC SCOR SBD2 SCOo2 SNBD SFBD SNPE SHSI

(ft) (api) (api) (api) (ohmm) (ohmm) (ohmm) (ohmm) (ohmm) (ohmm) (ohmm) (ohmm) (ohmm) (degF) (ptpf) (v/v) (cp30) (cp30) (g/cc) (g/cc) (g/cc) (g/cc) (g/cc) (g/cc) (b/e) (in)

1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

10291 -999.25 -999.25 -999.25 0.06 0.06  120.34 975 0.09 0.09 36.32 194.42 19442 142.46 -999.25 0.5 2440 475 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10291.5 -999.25 -999.25 -999.25 0.06 0.06 105.39 981.11 0.09 0.09 3445 193.68 193.68 142.6  -999.25 0.5 2445 475 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10292 -999.25 -999.25 -999.25 0.06 0.06 84.5 986.24 0.09 0.09 3112 191.57 191.57 142.77 -999.25 0.5 2457 474 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10292.5 -999.25 -999.25 -999.25 0.06 0.06 52.02 952.05 0.09 0.09 28.88 188.31 188.31 142.95 -999.25 0.5 2467 472 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10293 -999.25 -999.25 -999.25 0.06 0.06 3212 927.16 0.09 0.09 28.85 186.63 186.63 143.16 -999.25 0.5 2470 472 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10293.5 -999.25 -999.25 -999.25 0.06 0.06 27.58 972.77 0.09 0.09 2699 187.16 187.16 143.84 -999.25 0.5 2470 472 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10294 -999.25 -999.25 -999.25 0.06 0.06 31.96 1047.71 0.09 0.09 21.46 188.23 188.23 14435 -999.25 0.49 2475 476 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25
10294.5 -999.25 -999.25 -999.25 0.06 0.06 64.08 1005.84 0.09 0.09 17.79 190.26 190.26 144.8 -999.25 0.49 2475 482 -999.25 -999.25 -999.25 -999.25 -999.25 -999.25 11.34  -999.25
10295 -999.25 -999.25 -999.25 0.06 0.06 125.01 886.83 0.09 0.09 13.62 19259 192.59  145.28 5.66 0.48 2471 487 2.24 -0.29 -999.25 -999.25 -999.25 2.52 11.31 8.5
10295.5 -999.25 -999.25 -999.25 0.06 0.06 241.79  848.52 0.09 0.09 10.03 194.6 1946  145.93 32.03 0.48 2466 490 223 -0.29 -999.25 -999.25 -999.25 2.52 11.32 8.5
10296 -999.25 -999.25 -999.25 0.06 0.06  480.27 976.85 0.09 0.09 5.39 200 200 146.32 51.08 0.48 2465 491 2.23 -0.29 -999.25 -999.25 -999.25 2.52 11.25 8.5
10296.5 -999.25 -999.25 -999.25 0.06 0.06 318.86  885.12 0.09 0.09 0.39 200 200 146.71 48.06 0.48 2462 492 2.23 -0.29 -999.25 -999.25 -999.25 2.52 11.22 8.5
10297 -999.25 -999.25 -999.25 0.06 0.06 188.62  966.88 0.09 0.09 0.45 200 200 147.06 63.25 0.48 2462 494 2.23 -0.29 -999.25 -999.25 -999.25 2.52 11.19 8.5
10297.5 -999.25 -999.25 -999.25 0.06 0.06 110.06 1315.63 0.09 0.09 0.36 147.62 82.68 0.48 2463 495 2.22 -0.29 -999.25 -999.25 -999.25 2.52 11.15 8.5
10298 -999.25 -999.25 -999.25 0.06 0.06 71.02 1518.89 0.09 0.09 0.32 147.99 46.49 0.48 2465 498 2.22 -0.3  -999.25 -999.25 -999.25 2.52 11.09 8.5
10298.5 -999.25 -999.25 -999.25 0.06 0.06 46.32  1565.17 0.09 0.09 0.29 148.39 26.48 0.47 2467 499 2.22 -0.3  -999.25 -999.25 -999.25 2.51 11.07 8.5

Depth, 5GRC, SGRL, SGRE, SEXFE, SESE, SEMP, SEDP, SEXC, SESC, SEMC, SED , STEM, SDDE, SELF, SHNLE, SHFL, SBDC, SCOR, 5BD2, SC02, SNBD, SFED, SNEE, SHST
(fr), (api), (api}), (api), (ohmm) , (chmm), (chmm), (ohmm), (ohmm), (o ), (ohmm) , (ohmm) , (ohmm) , (degF), (prpf), (v/v), (cp30), (cp30), (gfcc), (gfce),
1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28
10291,-999,25,-999,25,-999,25,0,06,0.06,120.34,975,0.09,0.09,36.32,194,42,194,42,142,.46,-999,25,0.5,2440,475,-998,25,-999,25,-999, 25, -
10291.5,-999,25,-999,25,-999,25,0.06,0.06,105.39,981,11,0.09,0.09,34,.45,193,68,193.68,142.6,-999,25,0.5,2445,475,-999,25,-999,25,-999
102€2,-999,25,-999,25,-999,25,0,06,0.06,584.5,986.24,0.09,0.0%9,31.12,191,57,191,57,142.77,-999,25,0.5,2457,474,-99%9,25,-999,25, -995,25
10z€2.5,-999,25,-999,25,-99%9,25,0.06,0.06,52.02,952.05,0.09,0.09,28.88,188.31,188,31,142,95,-999,25,0.5,2467,472,-999,25,-999, 25, -99%
10293,-999,25,-999,25,-999,25,0,06,0.06,32.12,927.16,0.09,0.09,28,.85,156.63,186.63,143.16,-999,25,0.5,2470,472,-9959,25, 999,25, 995, 2
10293.5,-999,25,-999,25,-959%9,25,0.06,0.06,27.58,972.77,0.09,0.09,26.99,187.16,187.16,143,84,-95%9,25,0.5,2470,472,-999,25,-959%, 25, -99%
10294,-599,25,-999,25,-999,25,0.06,0.06,31.96,1047.71,0.09,0.09,21.46,188.23,188.23,144.35,-995,25,0.49,2475,476,-999,.25,-95959, 25, -999
102%54.5,-999,25,-999,25,-999,25,0.06,0.06, 64.08, 1005.84,0.09,0.09,17.79,190.26,150.26,144.8,-955.25,0.49, 2475, 482, -999,25,-9599,.25, -99
10295,-999,25,-99%,25,-5999,25,0,06,0.06,125.01,886.83,0.09,0.09,13.62,192,55%,192.59,145,.28,5.66,0.48,2471,487,2.24,-0.29,-99%9,25,-99%
10295.5,-999,25,-999,25,-999,25,0.06,0.06,241.79,848,52,0.09,0.09,10.03,194,6,194,6,145,.93,32.03,0.48,2466,490,2,.23,-0.29,-999,25,-99
10296,-999,25,-999,25,-999,25,0,06,0.06,480.27,976.85,0.09,0.09,5,39,200,200,146.32,51.08,0.48,2465,491,2.23,-0.29,-999,25,-999,25,-9
10296.5,-999,25,-999,25,-999,25,0.06,0.06,318.86,885,12,0.098,0.09,0.39,200,200,146.71,48.06,0.4%,2462,492,2.23,-0.29,-999,25,-999, 25, -
10297,-999,25,-999,25,-999,25,0,06,0.06, 188.62,966.88,0.09,0.09,0.45,200,200,147.06,63.25,0.48,2462,494,2,23,-0.29,-99%9,25,-999,25, -9
102987.5,-999,25,-999,25,-9959,25,0.06,0.06,110.06,1315.63,0.0%9,0.0%,0.36,200,200,147.62,82.68,0.48,2463,495,2.22,-0.29,-999,25,-9595,25
10298,-999,25,-999,25,-999,25,0,06,0.06,71.02,1518,.89,0.09,0.09,0.32,200,200,147.99,46.49,0.48,2465,498,2.22,-0.3,-999,25,-999,25, -99
10298.5,-999,25, 999,25, -995,25,0.06,0.06,46.32,1565.17,0.09,0.09,0.29,200,200,148.35,26.458,0.47,2467,499,2.22,-0.3,-9599,25,-959,25, —
10289,-899.25,-999,25,-999,25,0.06,0.06,0.85,1502.45,0.09,0.09,3.76, 200, 200,148.73,22.72,0.48, 2460, 497,2.21,-0.3,-999.25,-9595,. 25, -999
10299.5,-999,25,-999,25,-995,25,0.06,0.06,0.96,1282.31,0.09,0.09,6.06,200,200,145.6,158.31,0.48,2461,495,2.,22,-0.259,-935%,25,-999,25, -9
10300,-999,25,-999,25,-999,25,0.06,0.06,1.22,1358,.33,0,1,0.09,9.82,200,200,149,57,8,71,0,48,2462,495,2.22,-0.29,-999,25,-999,25,-999,;
10300.5,-999,25,-999,25,-999,25,0.06,0.07,1.64,1356.55,0.1,0.09,15.38,200,200,149,55,3.72,0.48,2468,491,2.23,-0.28,-999,25,-999,25,-9
10301,-999,25,-999,25,-999,25,0,06,0.07,2,1166.42,0.1,0.09,25.72,200,200,149,55,0.53,0.48,2473,487,2.23,-0.28,-999,25,-999,25,-995,25
10301.5,-999,25,-999,25,-9%%9,25,0.06,0.07,1.96,1051.09,0.11,0.09,40.57,200,200,149.53,1.97,0.48,2474,484,2.23,-0,28,-999,25,-999,25, —
10302,-999,25,-999,25,-999,25,0,06,0.07,1.57,1018.14,0.11,0.09,42,86,200,200,149.49,2.73,0.48,2479,482,2.,22,-0.28,-999,25,-9599,25, -99
10302.5,-999,25,-999,25,-9%%9,25,0.07,0.07,1.07,882.06,0.12,0.08,24.52,200,200,149,42,2.36,0.47,2483,488,2.24,-0.26,-995,25,-995,35, -9

SGRC SGRA SGRB SEXP SESP SEMP SEDP
Precision-DM SEXC SESC SEMC SEDC SEDA STEM SDDE
o000 00— SPLF SNNA SNFA SBDC SCOR SBD2 SCO2
SNBD SFBD SNPE SHSI
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Well Curves — Clustering

Custemer Dendograms - Ward Customer Dendograms - Centroid
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Clustering method: Ward Clustering method: Centroi

Coefficient: Squared Euclidean Distance Coefficient: Squared Euclidean Distance
Customer Dendograms - Average Linkage Customer Dendograms - Complete Linkage
5000 8000 4
7000 4
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\ 6000 1
4000

3000

2000

00 I .

Clustering method: Average Linkage Clustering method: Complete Linkage
Coefficient: Squared Euclidean Distance Coefficient: Squared Euclidean Distance

Some distinct clusters, majority of points are mixed
Review data to remove non-discriminatory data
3. Investigate end points. Rerun and review

Precision-ID/M Cluster analysis using Spyder / Anaconda
@0 0@ @ @ » Scipy.cluster.hierarchy.dendrogram
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Well Curves — Change of coefficient

Customer Dendograms - Average Linkage

20 4
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Clustering method: Average Linkage
Coefficient: Canberra

Precision-IDDMM Cluster analysis using Spyder / Anaconda
@0 0 @ @ » Scipy.cluster.hierarchy.dendrogram
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Customer Dendograms - Complete Linkage

W T

Clustering method: Complete Linkage
Coefficient: Canberra

More distinct clusters, easier to differentiate
Investigate groups for significance
Review data for noise



Micropaleontology

Benthonic Foraminifera — Protozoa. Live(d) on the sea bottom. Size ~ 200-2000 microns
Best viewed with binocular microscope at 25x — 80x magnification

North West Borneo

Environmental Scheme

(Shell, 1970s)

Holomarine Inner Neritic
0 — 40m water depth

Holomarine Middle Neritic
40 — 100m water depth

Holomarine Middle Neritic

100 — 200m water depth
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o—0—10—O0—0—

Copyright©2019 Precision-DM

\

T

o

il

: ,0.9".!103}1__“__,{__ _fresh _

J
7 Tidal mongrove

Peot swamp/
| /

TR e
7 _broe== (

fswam

/

P/

TG T 7
\. ; ] i

SCHEMATIC OUTLINE OF
NW. BORNEO ENVIRONMENTAL UNITS

Fluviomarine realm



Micropaleontology — The DATA
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Depth, NON1, RSPP, R3, R2,AM1, TX7,R4,ELPHL, BO1, NON3, CI1, QSPP, R2V1, GOIDSEP, BO6, GY1, TX1, OPSPF, ELPHSEP, N1, TLSPP, NON2, HM1, SGM5, M9, GOID8/ 84, BO16, SGOID1, AGl,R24, R26V
504,3.5,3.5,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
702,3%.5,0,13,3.5,13,3.5,3.5,3.5,0,0,0,0,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,!
¢s0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3%.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

ss0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
$80,3.5,3.5,0,0,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,!

i010,0,0,90,0,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,90,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
io070,0,0,0,0,3.5,0,0,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

600,13,13,60,3.5,60,60,3.5,60,3.5,3.5,3.5,3.5,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
620,13,13,60,3.5,60,3.5,3.5,13,0,3.5,13,3.5,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,!
630,13,0,60,3.5,60,3.5,3.5,13,3.5,0,3.5,0,3.5,0,3.5,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
€40,3.5,0,60,3.5,60,3.5,3.5,3.5,3.5,0,3.5,0,13,0,0,0,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
é%0,0,0,13,0,3.5,0,0,3.5,0,0,0,0,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%00,0,3.5,0,0,3.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1040,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1060,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1100
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Group samples belonging to the same environment of

deposition based on species content

The purpose
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Micropaleontology — Well foraminiferal samples

Customer Dendograms - Centroid Method

Customer Dendograms - Ward's Method
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Clustering method: Ward Clustering method: Centroid
Coefficient: Squared Euclidean Distance Coefficient: Squared Euclidean Distance

Customer Dendograms - Average Linkage Method Customer Dendograms - Complete Linkage Method
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Clustering method: Average Linkage CIusterlng method: Complete Lmkag
Coefficient: Squared Euclidean Distance Coefficient: Squared Euclidean Distance

.. 1. Some distinct clusters, mostly mixed
PreClSlon-DM Cluster analysis using Spyder / Anaconda ’ y

@—0@ 0 0@ 0@ Scipy.cluster.hierarchy.dendrogram = Inve.Stlgate groups for significance
3. Review data for noise
Copyright©2019 Precision-DM



Data Science opportunities — Paleoenvironmental reconstruction

Stratigraphy

-Litho, bio, chrono
-Sea level changes
-flooding surfaces

Structural
-faults

-uplifts

-eustatic
-erosion

-missing sections

Precision-DM
o—0—10—O0—0—
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Sedimentary facies
-types

-characteristics
-bedding, dips etc

-log shape interpretation

Paleoenvironments

Well Logs

-Gamma ray Minerals
-Sonic -glauconite
-Density -siderite
-Neutron -pyrite
-Resistivities -mica

-Caliper

Seismic

-seismic features
(seismostrat)

-traces

-Checkshots

-time-depth curve
-Vertical seismic profiling
(VSP)

Paleontology
-benthics
-planktonics
-larger forams
-nannofossils
-palynology
-ostracods
-trace fossils



Data Science opportunities— Source Rocks
Rock properties

Pressure . . .

_Spot readings Well Logs Sedimentary facies  -Porosity

_Trends -Gamma ray -types -Permeability

Temperature -Sonic -characteristics -Diagenesis

: -Density -bedding, dips etc
-Sample readings e ) . Macerals
: -Resistivities -log shape interpretation . .

-Gradients _Caliper -Organic type (Lip.
Surrounding wells vs Vit.)
_well data -Kitchen area
_Source rock -Migration paths
distribution patterns Source Rocks “Maturity levels

-maps & trends (DOM, VR/E)

Paleontology

Burial History

-Sedimentation rates : : -benthics ,
Sediment types Computer si mu Ia’qon -planktonics
“Missing sections -Methods (eg Migration -larger forams
-Palinspastic reconstruction Models o -nannofossils
— -Probabliistic vs -palynology
Precision-DM deterministic -ostracods

o000 00—
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Data Science opportunities— Prospect appraisal

Temperature Sedimentary facies

-Sample readings Analogues -Sediment types

-Gradients -local comparators -yl? SIS

' -Characteristics -faults
-regional - :

Pressure -global -Bedding, dl_PS etc ‘ -closures
Spot readings -Log shape interpretation  _¢oq/s
-Trends

Surrounding wells

Burial History
-Sedimentation rates

-Well data -Sediment types
-Correlation Prospect Appraisal -Missing sections
-Maps & trends -Palinspastic
Rock properties reconstruction
-Porosity Well Logs | | Paleoptology
-Permeability _Gamma ray Computer simulation -benthics
-Diagenesis _Sonic -Methods (eg Monte -planktonics
-Density carlo) Source Rocks -arger forams
- -Neutron -Probabliistic vs  _1ypne (lip. vs vit.) -nannofossils
STeAISIOn- DM pesistivities deterministic Kitchen areq  P@Ynology
-ostracods

Copyright©2019 Precision-DM

-Caliper

-Maturity



Conclusions

* Machine learning is not a black box

* Understand the ML workflow components, behaviors and
limitations

* Look at the DATA
* Give importance to feature selection & feature extraction
* Look at the results

* Look at the DATA again

Precision-DM
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Questions
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