

Clustering Considerations for Machine Learning

With examples from exploration data

Philip Lesslar

Digital Energy Journal Forum 2019

3rd October 2019

ADAX Center, Bangsar South

Kuala Lumpur, Malaysia

Key messages

- Focus is only on clustering
- Understand internals to maximise ML effectiveness
- Classification is a big field
- Data analysis is not for the faint-hearted
- Usage with some example exploration data

Machine Learning

Classification:

Creating meaningful groups out of a collection of objects

Build the Model:

Feature extraction to enable effective identification of new objects

Identification:

Use the model to identify new objects to one of the groups

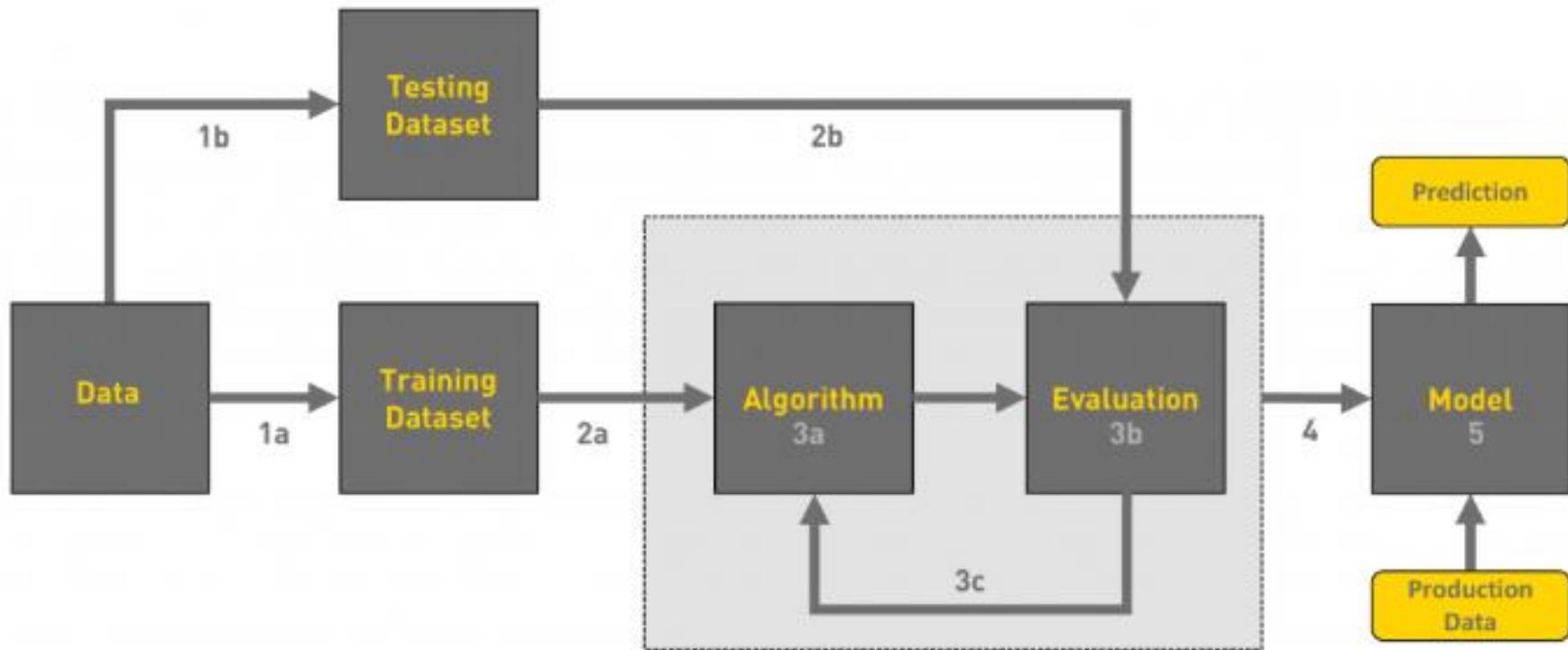
Unsupervised learning

Training
(*Model building*)

Testing

Supervised learning

The Machine Learning Workflow



<https://towardsdatascience.com>

- Cluster analysis
 - *Finding “natural” or pre-determined groups in datasets*
- Principal components analysis
 - *Reducing the dimensionality of a data set by finding a smaller set of variables that still represents it*
- Factor analysis
 - *For data sets where a large number of observed variables are thought to reflect a smaller number of unobserved/latent variables.*
- Multi dimensional scaling
 - *Technique for visualising the level of similarity of samples transformed onto a 2D plane*
- Linear & Multiple Regression
 - *One or more independent variables are used to predict the value of a dependent variable*

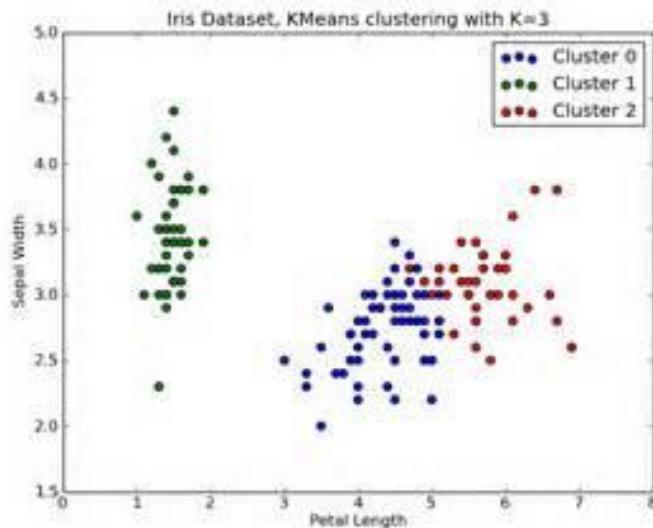
Some approaches to Clustering

- K-Means
 - *Iterative computing of distances between points and group means. Requires specification of number of groups.*
- Mean Shift Clustering
 - *Sliding iterative method to find point groups of higher mean density.*
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 - *Similar to Mean Shift but will identify noise and outliers.*
- Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM)
 - *Uses Gaussian approach to define clusters and uses both mean and std deviation unlike K-Means which only uses means. Detects elliptical clusters*
- Agglomerative Hierarchical Clustering
 - *Progressive pairwise clustering until all are merge into one tree in a dendrogram. Not too sensitive to choice of coefficient.*

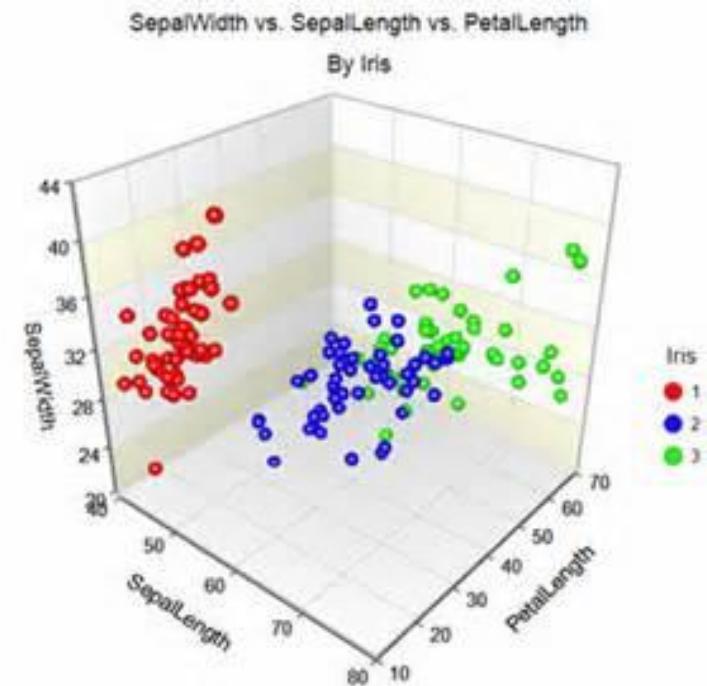
Cluster Analysis – Separating variables in n-dimensions

Visualization

2 dimensions



3 dimensions



4, 5, , n dimensions?

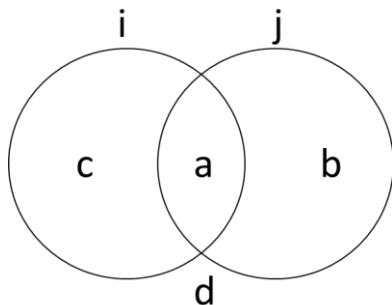
Cluster analysis requires:

1. Measure of pairwise proximities between points
2. Grouping method

Proximity measures

Data

Binary
(presence/absence)



Continuous

Matching coefficient

Jaccard coefficient (1908)

Rogers & Tanimoto (1960)

Sneath & Sokal (1973)

Gower & Legendre (1986)

$$S_{ij} = (a + d) / (a + b + c + d)$$

$$S_{ij} = a / (a + b + c)$$

$$S_{ij} = (a + d) / [a + 2(b + c) + d]$$

$$S_{ij} = a / [a + 2(b + c)]$$

$$S_{ij} = (a + d) / [a + \frac{1}{2}(b + c) + d]$$

$$S_{ij} = a / [a + \frac{1}{2}(b + c)]$$

Euclidean Distance

Distance between vectors x & y

$$d(x, y) = \sqrt{\sum_i^n (x_i - y_i)^2}$$

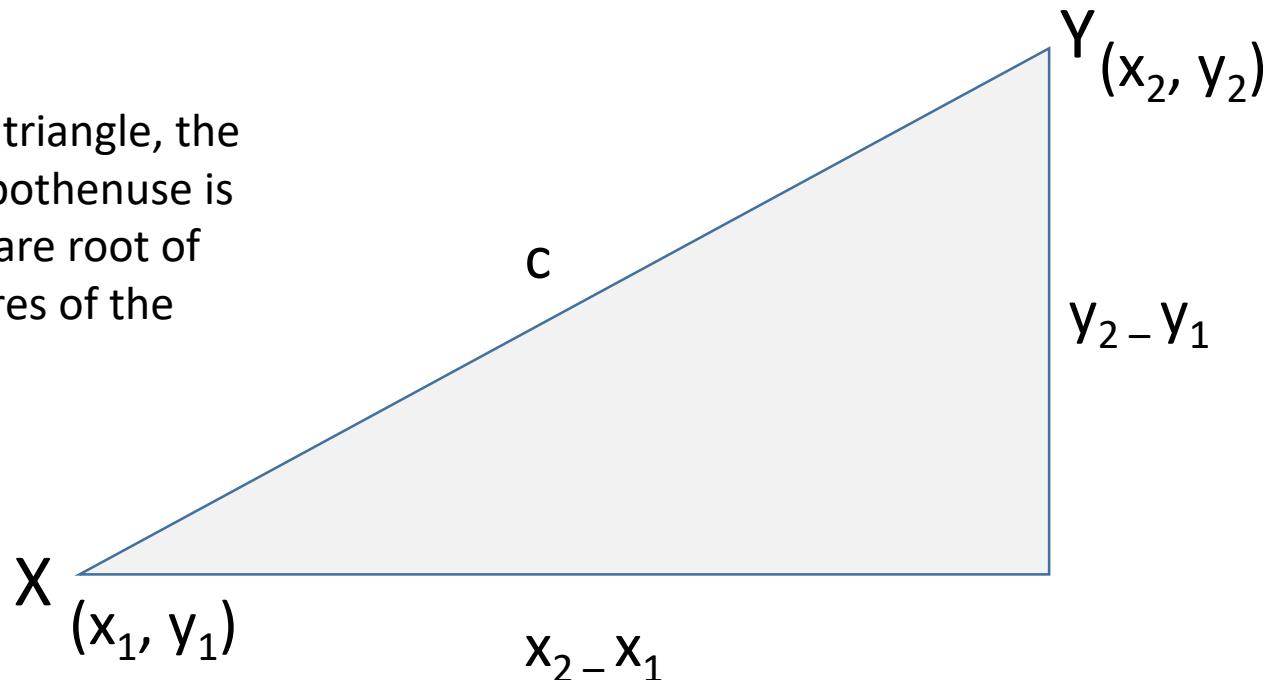
Canberra Distance

Distance between vectors u & v

$$d(u, v) = \sum_i \frac{|u_i - v_i|}{|u_i| + |v_i|}$$

Proximity measures - Euclidean Distance – Pythagoras's Theorem

In a right angled triangle, the length of the hypotenuse is equal to the square root of the sum of squares of the other 2 sides



$$C = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The Euclidean Distance $d(x, y) = \sqrt{\sum_i^n (x_i - y_i)^2} = C, n = 2$

Examples from Exploration data

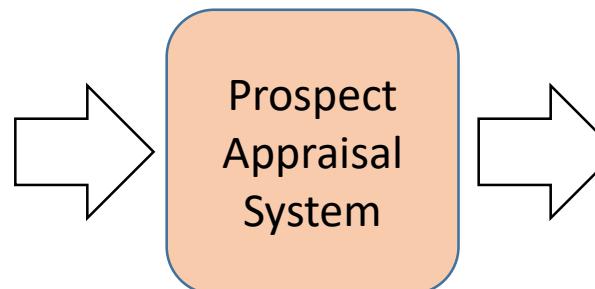
1. Prospect Appraisal – Expectation values
2. Well logs – Curve values
3. Micropaleontology – Foraminiferal assemblages

Exploration Prospect Appraisal



DATA

Seismic interpretation
Geological picks & zones
Paleontology (incl. palyn, nanno etc)
Lithology & Lithofacies
Environments of deposition
Temperature
etc



Probabilistic
- Bootstrap
- Monte Carlo

Expectations	Cutoffs
POS	0 mbbls
MSV	30 mbbls
HSV	
REC	0 bcf/tcf
STOIIP	
GIIP	

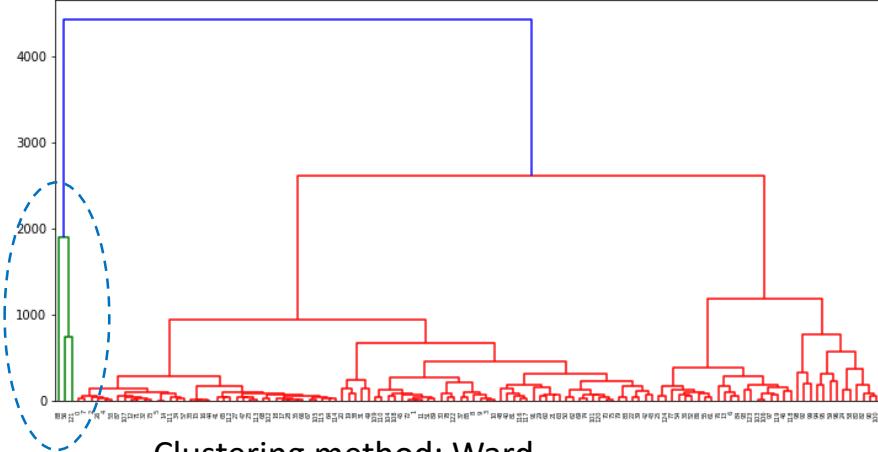
Exploration Prospect Appraisal – The DATA

OIL (0 mmbbls cutoff)				OIL (30 mmbbls cutoff)				GAS (0 bscf cutoff)				(values/POS)			
POS	MSV	HSV	Expectation		POS	MSV	HSV	POS	MSV	HSV	Expectation		MSV	MSV	
			REC.	STOIIP							Rec.	GIIP			
80	6	10	5	24	1	21	0	96	79	133	76	122	30	127	
64	11	26	7	23	10	38	60	64	25	57	16	27	36	42	
68	11	23	8	31	15	29	38	80	41	90	33	55	46	69	
85	5	9	4	27	0	0	0	85	15	32	13	25	32	29	
72	7	16	5	22	6	29	40	80	27	64	22	36	31	45	
78	3	6	2	11	0	0	0	87	13	30	11	18	14	21	
80	4	8	3	11	0	0	0	99	29	49	29	49	14	49	
81	11	22	9	43	18	28	36	90	55	114	50	82	53	91	
26	8	19	2	10	4	29	36	29	35	75	10	16	38	55	
65	4	6	2	12	0	0	0	72	34	59	24	34	18	47	
80	2	2	1	5	0	0	0	92	6	12	6	9	6	10	
85	22	41	18	73	40	36	52	95	113	219	107	184	86	194	
48	2	4	1	5	0	0	0	80	18	33	14	29	10	36	
48	2	4	1	5	0	0	0	80	18	33	14	29	10	36	
90	18	37	16	76	29	37	56	99	53	109	52	88	84	89	
84	20	48	17	81	29	47	75	94	57	135	54	92	96	98	
81	11	21	9	37	12	26	31	83	61	110	51	91	46	110	
81	11	21	9	37	12	26	31	83	61	110	51	91	46	110	
80	12	24	9	46	16	28	37	90	61	125	55	92	58	102	
80	12	24	9	46	16	28	37	90	61	125	55	92	58	102	
67	6	11	4	17	1	27	34	80	29	61	23	36	25	45	

The purpose: Exploring ‘natural’ groups of prospects may trigger ideas

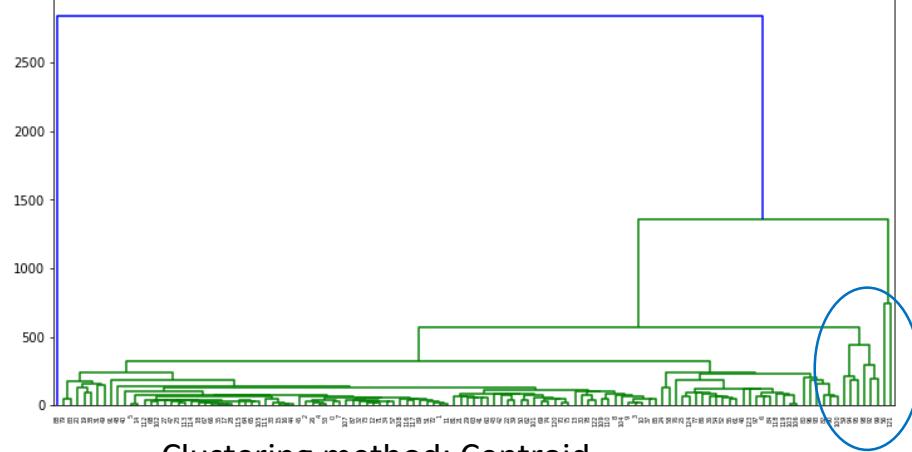
Exploration Prospect Appraisal - Clustering

Customer Dendograms - Ward's



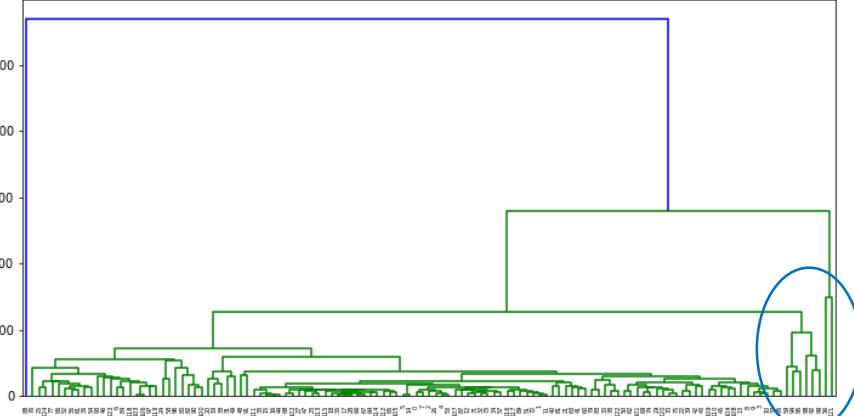
Clustering method: Ward
Coefficient: Squared Euclidean Distance

Customer Dendograms - Centroid



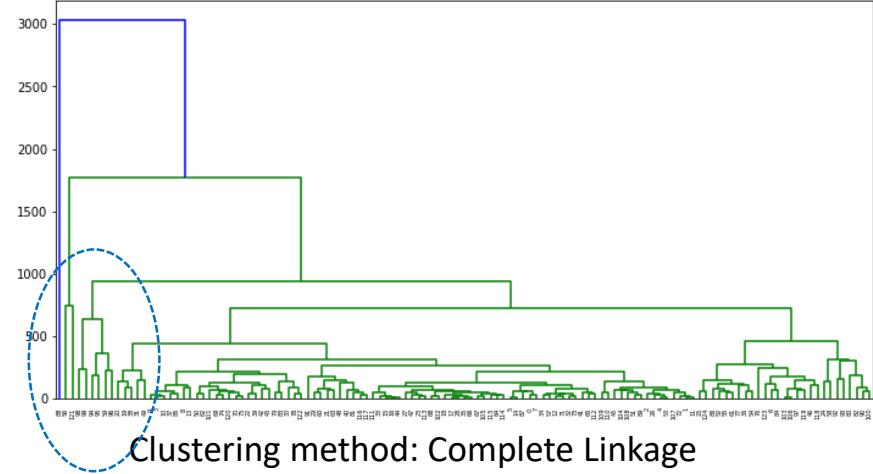
Clustering method: Centroid
Coefficient: Squared Euclidean Distance

Customer Dendograms - Average Linkage



Clustering method: Average Linkage
Coefficient: Squared Euclidean Distance

Customer Dendograms - Complete Linkage



Clustering method: Complete Linkage
Coefficient: Squared Euclidean Distance

Cluster analysis using Spyder / Anaconda
Scipy.cluster.hierarchy.dendrogram

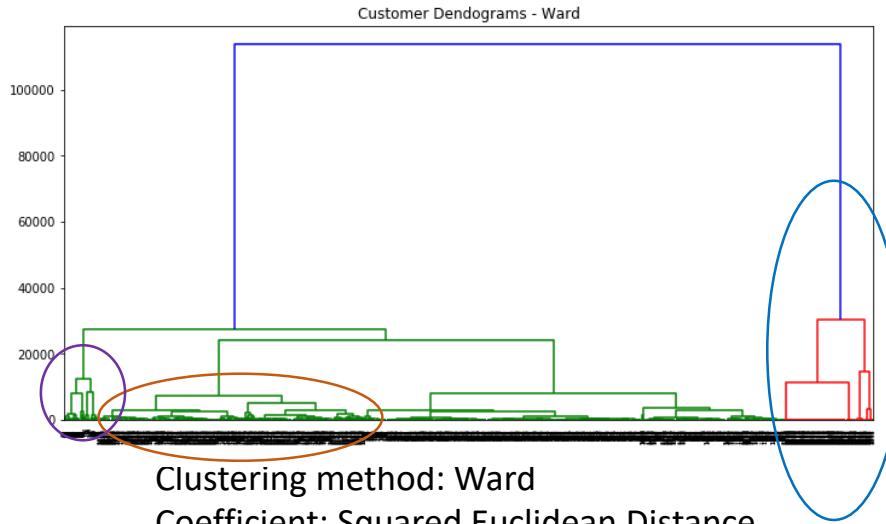
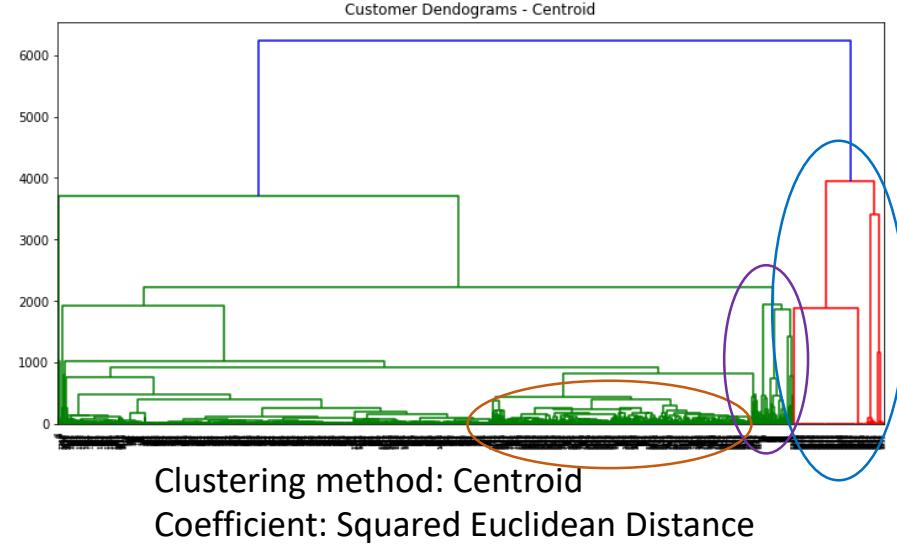
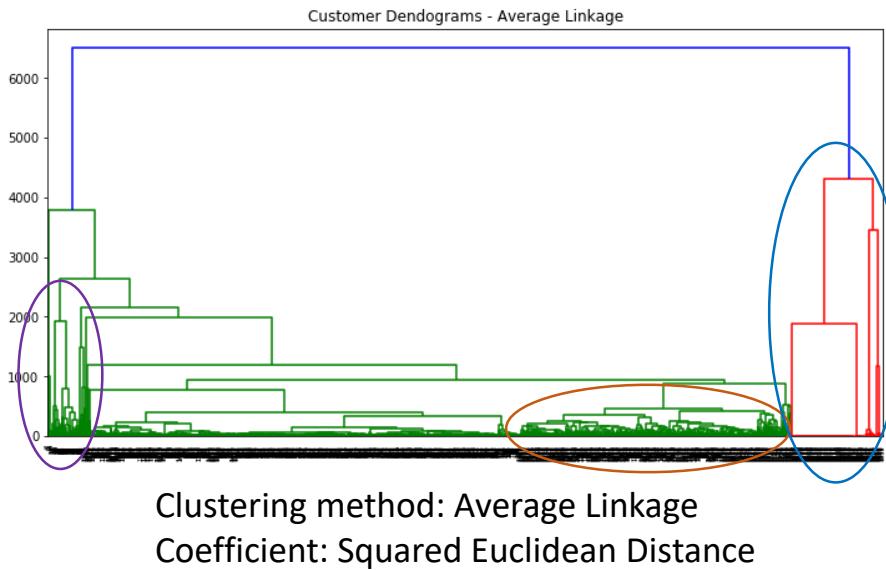
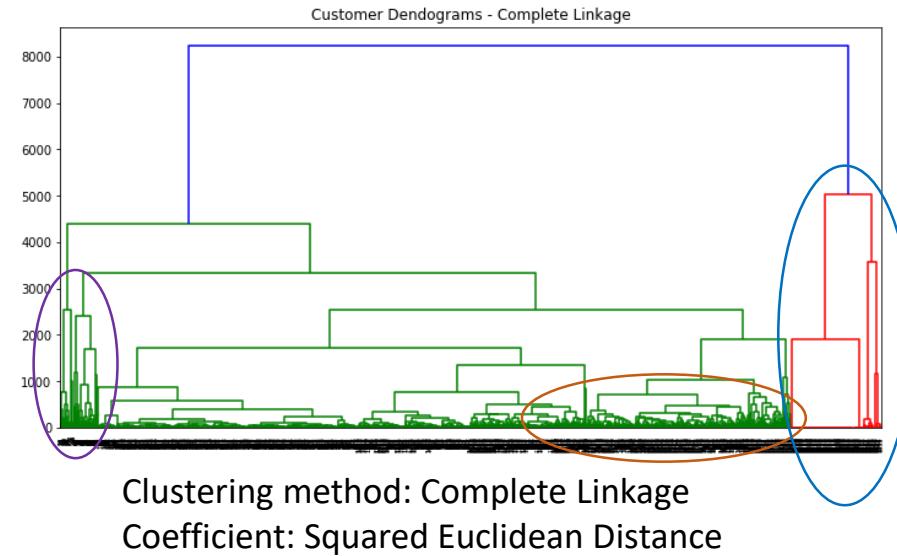
1. Not very distinct clusters
2. Review data to remove non-discriminatory data
3. Rerun and review

Well Curves – The DATA

Copyright © 2019 Precision-DM

SGRC	SGRA	SGRB	SEXP	SESP	SEMP	SEDP
SEXC	SESC	SEMC	SEDC	SEDA	STEM	SDDE
SPLF	SNNA	SNFA	SBDC	SCOR	SBD2	SCO2
SNBD	SFBD	SNPE	SHSI			

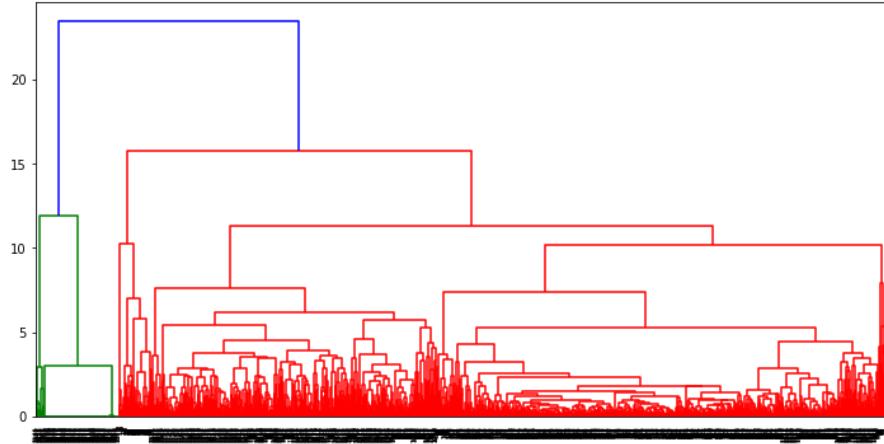
Well Curves – Clustering



1. Some distinct clusters, majority of points are mixed
2. Review data to remove non-discriminatory data
3. Investigate end points. Rerun and review

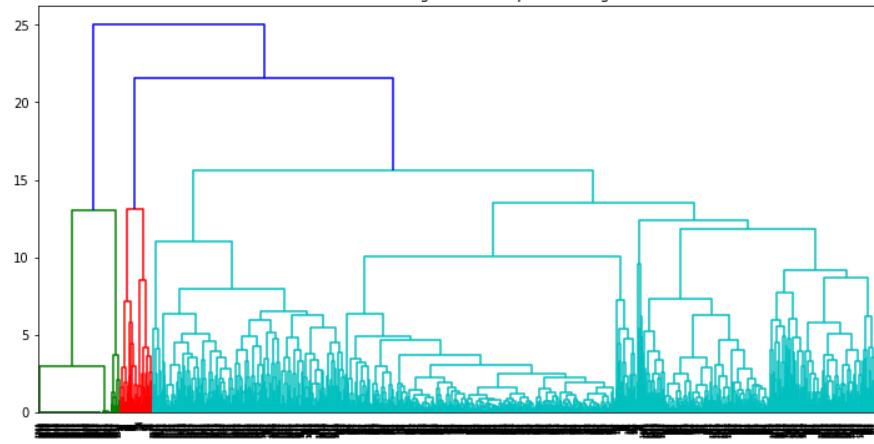
Well Curves – Change of coefficient

Customer Dendograms - Average Linkage



Clustering method: Average Linkage
Coefficient: Canberra

Customer Dendograms - Complete Linkage



Clustering method: Complete Linkage
Coefficient: Canberra

1. More distinct clusters, easier to differentiate
2. Investigate groups for significance
3. Review data for noise

Micropaleontology

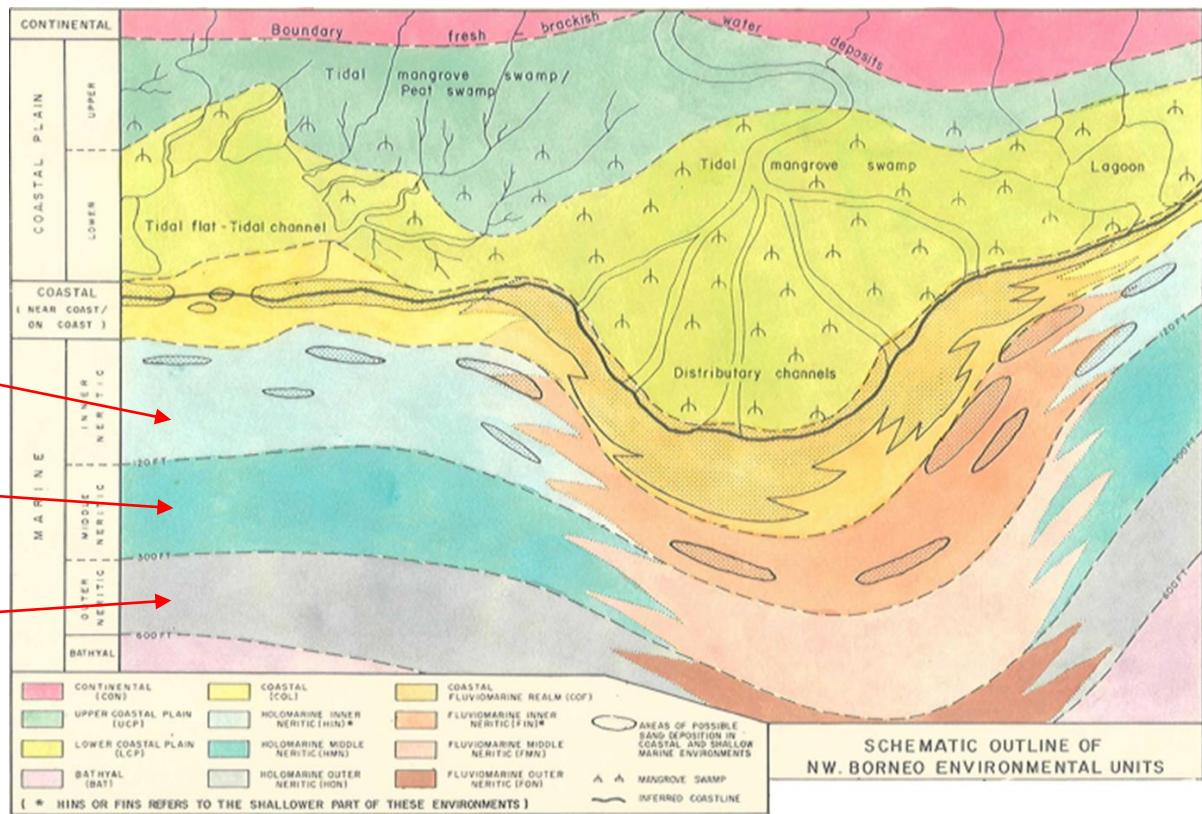
Benthonic Foraminifera – Protozoa. Live(d) on the sea bottom. Size \sim 200-2000 microns
Best viewed with binocular microscope at 25x – 80x magnification

North West Borneo Environmental Scheme (Shell, 1970s)

Holomarine Inner Neritic
0 – 40m water depth

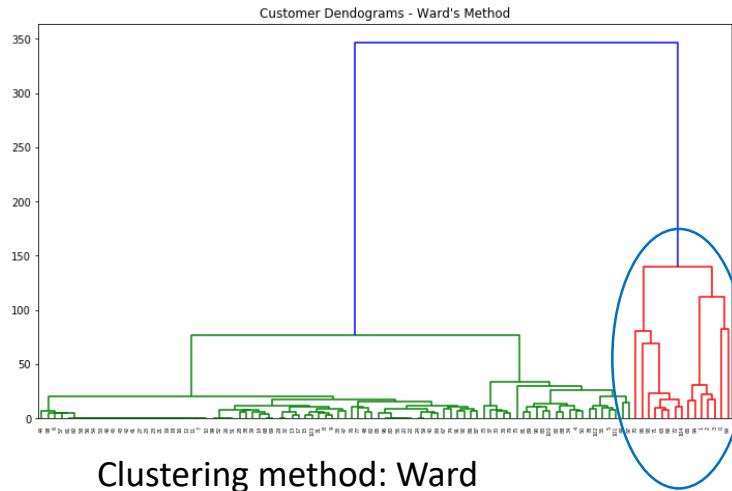
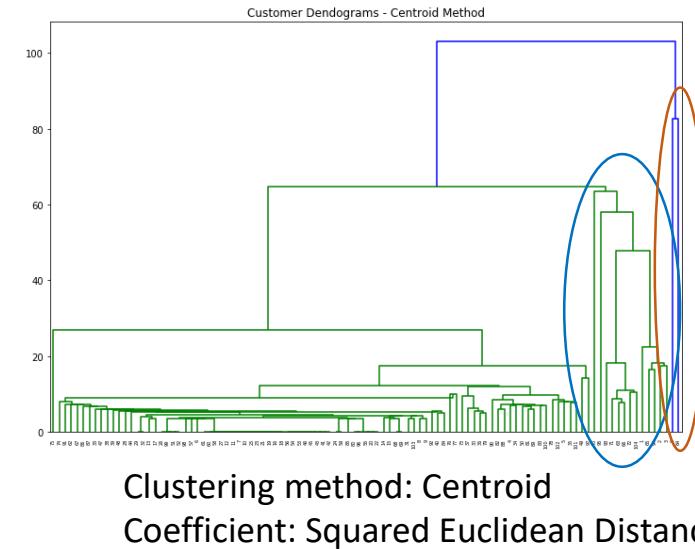
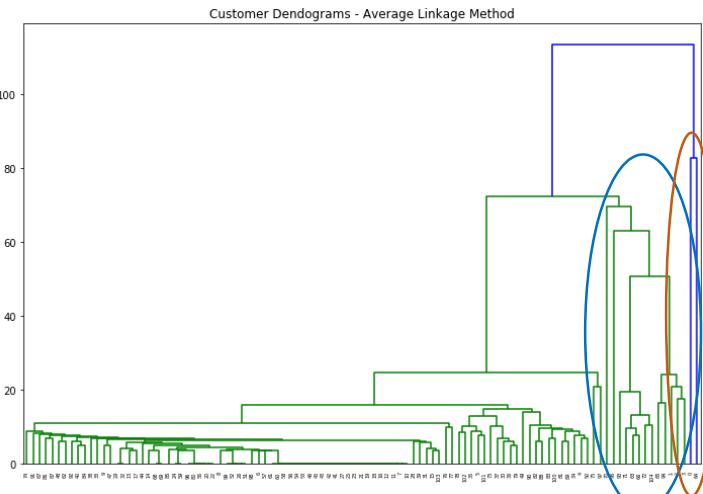
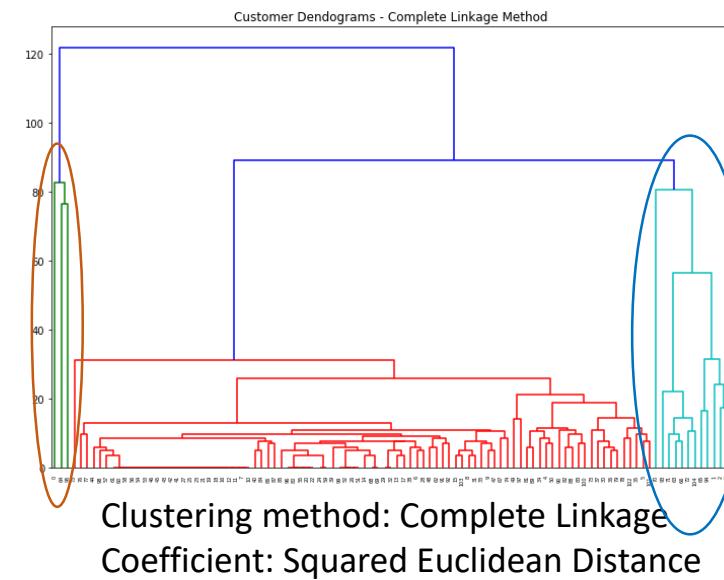
Holomarine Middle Neritic
40 – 100m water depth

Holomarine Middle Neritic
100 – 200m water depth



Micropaleontology – The DATA

Micropaleontology – Well foraminiferal samples



1. Some distinct clusters, mostly mixed
2. Investigate groups for significance
3. Review data for noise

Data Science opportunities – Paleoenvironmental reconstruction

Stratigraphy

- Litho, bio, chrono
- Sea level changes
- flooding surfaces

Structural

- faults
- uplifts
- eustatic
- erosion
- missing sections

Sedimentary facies

- types
- characteristics
- bedding, dips etc
- log shape interpretation

Seismic

- seismic features (seismostrat)
- traces
- Checkshots
- time-depth curve
- Vertical seismic profiling (VSP)

Paleoenvironments

Well Logs

- Gamma ray
- Sonic
- Density
- Neutron
- Resistivities
- Caliper

Minerals

- glauconite
- siderite
- pyrite
- mica

Paleontology

- benthics
- planktonics
- larger forams
- nannofossils
- palynology
- ostracods
- trace fossils

Data Science opportunities– Source Rocks

Pressure

- Spot readings
- Trends

Temperature

- Sample readings
- Gradients

Surrounding wells

- well data
- Source rock distribution patterns
- maps & trends

Burial History

- Sedimentation rates
- Sediment types
- Missing sections
- Palinspastic reconstruction

Precision-**DM**

Well Logs

- Gamma ray
- Sonic
- Density
- Resistivities
- Caliper

Sedimentary facies

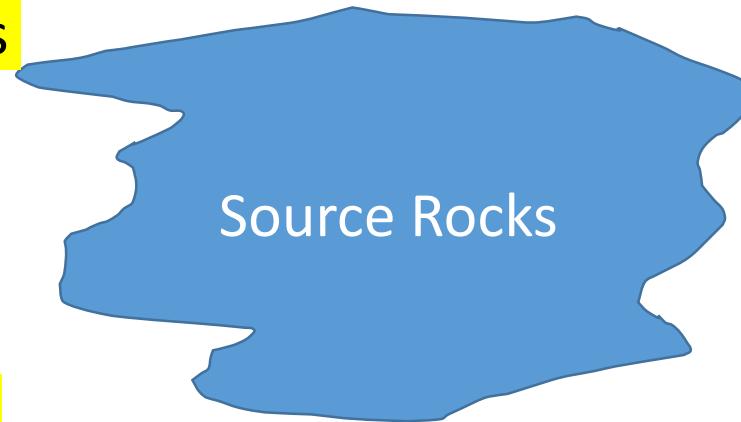
- types
- characteristics
- bedding, dips etc
- log shape interpretation

Rock properties

- Porosity
- Permeability
- Diagenesis

Macerals

- Organic type (Lip. vs Vit.)
- Kitchen area
- Migration paths
- Maturity levels (DOM, VR/E)



Computer simulation

- Methods (eg Migration Models)
- Probabilistic vs deterministic

Paleontology

- benthics
- planktonics
- larger forams
- nannofossils
- palynology
- ostracods

Data Science opportunities— Prospect appraisal

Temperature

- Sample readings
- Gradients

Pressure

- Spot readings
- Trends

Surrounding wells

- Well data
- Correlation
- Maps & trends

Rock properties

- Porosity
- Permeability
- Diagenesis

Analogues

- local comparators
- regional
- global

Sedimentary facies

- Sediment types
- Characteristics
- Bedding, dips etc
- Log shape interpretation

Structural

- faults
- closures
- seals

Burial History

- Sedimentation rates
- Sediment types
- Missing sections
- Palinspastic reconstruction

Paleontology

- benthics
- planktonics
- larger forams
- nannofossils
- palynology
- ostracods

Well Logs

- Gamma ray
- Sonic
- Density
- Neutron
- Resistivities
- Caliper

Computer simulation

- Methods (eg Monte carlo)
- Probabilistic vs deterministic

Source Rocks

- Type (lip. vs vit.)
- Kitchen area
- Maturity

Conclusions

- Machine learning is not a black box
- Understand the ML workflow components, behaviors and limitations
- Look at the DATA
- Give importance to feature selection & feature extraction
- Look at the results
- Look at the DATA again

Questions